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Abstract

We present an algorithm for the per-voxel semantic seg-
mentation of a three-dimensional volume. At the core of
our algorithm is a novel “pyramid context” feature, a de-
scriptive feature designed such that exact per-voxel linear
classification can be made extremely efficient. This feature
not only allows for efficient semantic segmentation but en-
ables other aspects of our algorithm, such as novel learned
features and a stacked architecture that can reason about
self-consistency. We demonstrate our technique on 3D fluo-
rescence microscopy data of Drosophila embryos for which
we are able to produce extremely accurate semantic seg-
mentations in a matter of minutes, and for which other al-
gorithms fail due to the size and high-dimensionality of the
data, or due to the difficulty of the task.

1. Introduction
Consider Figure 1(a), which shows slices from a volu-

metric image of a fruit fly embryo in its late stages of devel-
opment, acquired with 3D fluorescence microscopy. Such
data is a cornucopia of knowledge for biologists, as it pro-
vides direct access to the internal morphology of a widely
studied model organism at an unprecedented level of detail.
Traditionally, such information is encoded in a morpholog-
ical atlas (the ‘bible’ in Drosophila being [7]), which is
painfully constructed by physically slicing frozen embryos
and manually annotating each tissue. However, the recent
availability of high-resolution volumetric images from mul-
tiple modalities has spurred a great interest in the scientific
community for the creation of “virtual atlases” [15, 16, 20],
typically relying on the semantics provided by interactive
segmentation or gene expression patterns. From a computer
vision perspective, the problem at hand is that of volumetric
semantic segmentation, in which we must predict a tissue
label for each voxel in a volume. In this paper, we present
an extremely accurate and efficient algorithm for volumetric
semantic segmentation, based on a novel feature type called
the “pyramid context”. Figure 1(b) presents ground-truth

annotations manually collected by an expert for 8 key mor-
phological structures, and Figure 1(c) shows the results of
our approach on this test-set volume.

The state-of-the-art in semantic segmentation on 2D im-
ages is represented by the leading techniques on the PAS-
CAL VOC challenge [14]. The best performing methods,
e.g. [9, 2, 8] operate by classifying object candidates ob-
tained by expensive bottom-up grouping. They use repre-
sentations tailored to capture the appearance of common ob-
jects (e.g. colorSIFT [24]), and the output of pre-trained ob-
ject detectors [2], combined with non-linear classifiers [9, 2]
or, alternatively, high-dimensional second order features
[8]. A second family of approaches, based on CRFs, e.g.
[6], extends such pixel-wise classifiers by modeling also
pairwise dependencies, co-occurrence statistics, or higher-
order potentials. All such techniques, which build upon

(a) Input Signal (b) Ground Truth (c) Our Prediction

Figure 1. We will address the task of taking a volumetric scan
of an object (in our case, a late-stage Drosophila embryo, see 1(a)
for a visualization of some of the constituent “slices” of the vol-
ume, where the upper left slice is the top of the embryo and the
bottom right slice is the bottom) and producing a per-voxel seman-
tic segmentation of that volume. Given training annotations of 8
biologically-relevant tissue types from a biologist, such as in 1(b),
we can produce a per-voxel prediction of each tissue from a new
(test-set) volume in a matter of minutes, as shown in 1(c). Many
more such figures can be found in the supplementary material.
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Figure 2. An overview of our pipeline. Our classification archi-
tecture consists of two layers. Our first layer takes as input 4
feature types computed from the input volume (top row, position
features are not shown) to produce a per-voxel prediction. This
output is fed to a second layer, which computes the same types
of features from that per-voxel prediction, and uses the first-layer
features with the new second-layer features (bottom row) to pro-
duce a new prediction. The output of the two-layer model is then
smoothed using a joint-bilateral filter.

decades of computer vision research on 2D natural images,
are simply intractable and inapplicable in the terra incognita
of volumetric semantic segmentation: sophisticated 2D seg-
mentation techniques break down when faced with 15 mil-
lion voxels, and simple approaches like watersheds produce
segments which are too coarse for the accurate per-voxel
labeling of extremely fine-scale biological structures. Tra-
ditional sliding-window detection techniques [12] are in-
tractably expensive to densely evaluate at every window in
a 15 megavoxel volume, and generally reason only about
local appearance, not large-scale context. The handful of
volumetric segmentation techniques which do exist are re-
stricted to the specific task of connectomics with Electron
Microscopy [1, 25, 26].

Because existing techniques are insufficient, we must
construct a novel semantic segmentation algorithm. We will
address the problem as one of evaluating a classifier at ev-
ery voxel in a volume. Our features must be descriptive
enough to differentiate between fine-scale structures while
spatially large enough to incorporate coarse-scale contex-
tual information, and per-voxel classification of our features
must be efficient. To address these issues we introduce the
“pyramid context” feature, which can be thought of as a
variant of retina-like log-polar features such as the shape
context [3]. A key property of this feature is that by de-
sign, the dense evaluation of a linear classifier on pyramid
context features is extremely efficient. To create a semantic-
segmentation algorithm, we will place these pyramid con-
text features on top of oriented edge information (as in
HOG [12] or SIFT [21]) and on top of learned “codebook”
like features (as in a bag-of-words models [18]). We can
then stack these pyramid context layers into a multilayer

architecture which allows our model to reason about con-
text and self-consistency. A visualization of our semantic-
segmentation pipeline can be seen in Figure 2.

Our results are extremely accurate, with per-voxel APs
in the range of 0.86-0.98 — accurate enough that our test-
set predictions are often indistinguishable from our ground-
truth by trained biologists. Our model is fast — evaluation
of a volume takes a matter of minutes, while the time taken
by a biologist to fully annotate an embryo is often on the or-
der of hours, and the time taken by existing computer vision
techniques is on the order of days. And our model is exact
— we gain efficiency not through approximations or heuris-
tics, but by designing our features such that exact efficient
classification is possible.

2. The Pyramid Context Feature
At the core of our algorithm is our novel “pyramid con-

text” feature. The pyramid context is similar to the shape
context feature [3], geometric blur [4, 5], or DAISY features
[23] — all serve to pool information around a location in a
log-polar arrangement (Figure 3). The key insight behind
our pyramid context feature is that there exists two equiva-
lent “views” of the feature: it can be viewed as a Haar-like
pooling of signals at different scales (Figure 3(d)) or as a

(a) Input Signal (b) Shape Context [3] (c) Geometric Blur
[4, 5] / DAISY [23]

(d) Pyramid Context (e) Pyramid Context

Figure 3. Given an input signal and a location (3(a)) we can pool
local information in a retina-like fashion to construct a feature,
such as shape context (3(b)) or geometric blur / DAISY (3(c)). We
present a novel feature type, the “pyramid context” (3(d)) which
can be thought of as a pyramid/Haar-like generalization of past
pooling features. The key insight of this paper is that this fea-
ture can be re-expressed as efficient local operations on a Gaussian
pyramid of a signal (3(e)), which allows us to extremely efficiently
evaluate a linear classifier on pyramid context features at every
pixel in the image using simple pyramid operations and convolu-
tions with very small kernels.



series of interpolations into a Gaussian pyramid of a sig-
nal (Figure 3(e)). Because of this, we can evaluate a linear
classifier on top of pyramid context features at every voxel
in a volume extremely efficiently, using simple pyramid op-
erations and convolutions with very small kernels. In this
section we will formalize our feature, and present an effi-
cient per-voxel classification algorithm which is orders of
magnitude faster than existing alternatives.

Let V be a volume, and let us define c(V, x, y, z), which
computes a feature vector from V at location (x, y, z):

c(V, x, y, z) = [ V (x+ 1, y + 1, z + 1);
V (x, y + 1, z + 1);
...
V (x, y − 1, z − 1);
V (x− 1, y − 1, z − 1)]

(1)

Where V (x, y, z) is the linearly-interpolated value of vol-
ume V at location (x, y, z). c(·) simply vectorizes a 3×3×3
region of a volume into a vector. Note that the offsets are
ordered such that 〈w, c(V, x, y, z)〉 = (V ∗w)x,y,z

1. This
means that a linear classifier on top of these features can be
reformulated as a convolution of the volume.

Now let P (V ) be a K-level Gaussian pyramid of V , such
that Pk(V ) is the k-th level of the pyramid (P1(V ) = V ). A
pyramid context feature is the concatenation of our simple
“context” features at every scale of the pyramid:

C(V, x, y, z) = [ c (V, x, y, z) ;
c
(
P2(V ), x

2 ,
y
2 ,

z
2

)
;

...
c
(
PK(V ), x

2K−1 ,
y

2K−1 ,
z

2K−1

)
]

(2)

Where K = 6 in our experiments.
Consider a linear classifier for pyramid context features.

To classify every voxel in a volume, we must compute
〈w, C(V, x, y, z)〉 for all (x, y, z). Doing this naively is ex-
tremely inefficient: the volume is extremely large (15 mil-
lion voxels), and the corresponding features for each voxel
are hard to compute: each requires hundreds of trilinear in-
terpolation operations into a pyramid.

To make this problem tractable, we leverage the fact that
every operation in this architecture is linear, and therefore
associative. Instead of calculating 〈w, C(V, x, y, z)〉 for all
(x, y, z), we instead convolve each level of P (V ) with wk,
the subset of w that corresponds to level k, reshaped into a
3× 3× 3 filter. Once we have a filtered Gaussian pyramid,
we collapse the pyramid by upsampling the coarsest scale,
adding it to the next scale, and repeating. We will refer
to this process (computing P (V ), filtering each Pk(V ) with
wk, and collapsing the filtered P (V ) to a volume) as V ⊗w,
or as “pyramid filtering” V with w.

1In a slight abuse of notation, w will simultaneously be referred to as a
vector and as a 3× 3× 3 filter

Instead of learning classifiers directly on the input vol-
ume V we will produce a set of “feature channels” {F (i)}
from V , pyramid filter each channel with its own set of
weights w(i), and sum those together to produce our per-
voxel prediction: G =

∑
i F

(i) ⊗ w(i). This can be made
much faster by noticing that the pyramid collapse at the end
of each pyramid filtering is linear, and so we can sum up
the filtered pyramids and then collapse the summed pyramid
only once. Formally, pseudocode for our efficient per-voxel
classification is:

1: G← 0
2: for k = [K : −1 : 1] do
3: for i =

[
1 : |{F (i)}|

]
do

4: G← G+ Pk(F
(i)) ∗w(i)

k

5: if k > 1 then
6: G← upsample(G)

7: return G

See the supplementary material for a demonstration of the
improvement in efficiency yielded by using “pyramid fil-
tering” instead of pre-existing techniques, such as sliding-
window [12] or FFT-based filtering [13]. Empirically our
technique is 200× faster than sliding window while hav-
ing nearly as small a memory footprint, and is 5× to 20×
faster than FFT-based techniques while requiring 1/6th or
1/160th the memory. In short, only pyramid filtering can
run efficiently (or, at all) on the volumetric data we are in-
vestigating — naive alternatives either take over 1.5 hours
or require over a hundred gigs of memory, while our tech-
nique takes less than 30 seconds and requires less than 1
gigabyte of memory. Analytically, we show through com-
plexity analysis that pyramid filtering should be 42× as
fast as sliding-window, though we see a much greater im-
provement in practice because small convolutions are gen-
erally fast for non-algorithmic reasons (memory locality,
optimized code, etc).

3. Semantic Segmentation Algorithm

We will now build upon our novel feature descriptor
and its corresponding efficient classification technique to
construct a volumetric semantic-segmentation algorithm, as
shown in Figure 2. In Section 3.1 we will present three
kinds of feature channels for use as input to our model,
some of which are themselves built upon pyramid context
features. In Section 3.2 we present an additional feature
type based on the absolute position of each voxel. In Sec-
tion 3.3 we will show how to use the output of a single-layer
classification model built on the features in Sections 3.1 and
3.2 to build a two-layer model which uses contextual infor-
mation, again by exploiting our pyramid context features.
In Section 3.4 we present a post-processing step based on
joint-bilateral filtering.



3.1. Feature Channels

The simplest feature-channel which we can use is the
raw input volume, which we will refer to our “raw” feature
channel. We augment this channel with two kinds of feature
channels computed from the raw input volume: a “fixed”
type based on simple first and second derivatives of the in-
put volume (similar to HOG [12] or SIFT [21]) and a novel
“adaptive” type learned from pyramid context features on
top of the raw volume.

To compute our “fixed” features we take our volume V ,
compute a Gaussian pyramid P (V ), convolve each level by
a set of filters, half-wave rectify the output [22], and con-
catenate the channels together2. The filters we use are just
3-tap oriented gradient filters in all directions (12 in all),
and the 3D discrete Laplace operator. For each filter f , we
convolve each pyramid level Pk(V ) with that filter, and pro-
duce the following two channels:

max(0, Pk(V ) ∗ f), max(0,−(Pk(V ) ∗ f)) (3)

giving us a total of 26 channels. Examples of our “fixed”
channels can be seen in Figure 2.

Though these simple filter responses are powerful, they
are limited. They describe coarse first or second order vari-
ation of the volume, but do not, for example, describe local
context, or the distribution of the signal at multiple scales
at the same location. It is difficult to use ones intuition to
hand-design appropriate features, especially in unexplored
domains such as our volumetric fluorescence data, so we
will use semi-supervised feature learning to learn our sec-
ond set of “adaptive” feature channels.

Traditional feature-learning techniques usually involve
learning a set of filters from image patches [11, 19]. On our
data, these techniques fail for the same reasons that naive
classification fails: the sheer size and high-dimensionality
of our data makes basic techniques intractable. Filtering
volumes with the medium-sized filters commonly used in
feature learning experiments (9 × 9, 14 × 14, etc) is in-
tractable, and such filters have too small a spatial support to
provide useful information regarding context or morphol-
ogy. We will therefore use our pyramid context features as a
substrate for feature learning: we will extract pyramid con-
text features from the raw volume, learn a set of filters for
those features, and then pyramid filter the volume according
to those learned filters.

We use the feature-learning technique of [11] to learn
filters, which is effectively whitening and k-means (see the
supplementary material for a thorough explanation). This
procedure gives us a set of filters {fj} and a set of biases

2in a slight abuse of our formalism in Section 2, instead of producing a
feature channel and constructing a pyramid from that channel, we instead
produce a pyramid from the volume, and then filter and rectify each scale
of that pyramid independently. This works significantly better due to half-
wave rectification being applied to the pyramid rather than the volume.

{bj}, with which we can compute our feature channels as
follows:

Fj = max(0, (V ⊗ fj) + bj) (4)

Where⊗ is pyramid filtering, as described earlier. We learn
26 channels, the same number as our “fixed” feature set,
so that we can compare the effectiveness of both feature
sets. We take a semi-supervised approach when learning
features: for each tissue-type, we learn a different set of
filters using only locations within 10 voxels of the tissue of
interest. Examples of the channels we learn can be seen in
Figure 2.

Note that our “adaptive” channels describe fundamen-
tally different properties than our “fixed” channels. Our
fixed channels describe the local distribution of a volume at
a given location, orientation, and scale, while our adaptive
channels describe the local distribution of pyramid context
features at a given position, and as such they can describe
non-local phenomena. An adaptive channel may learn to ac-
tivate at voxels which are slightly to the left of some mass at
a fine scale and distantly to the right of a much larger mass
at a coarse scale, for example.

With our one “raw” channel, our 26 “fixed” channels,
and our 26 “adaptive” channels, we can construct a feature
vector for a voxel by computing pyramid context features
for each channel at that voxel’s location and concatenating
those pyramid context vectors together (See Figure 2). This
feature can be augmented by incorporating position infor-
mation, as we will now demonstrate.

3.2. Position Features

Our imagery has been rotated to the “canonical” orien-
tation used by the Drosophila community (see Figure 1(b)),
and all volumes have been roughly registered to each other,
which means that the absolute position of a voxel is infor-
mative. Our feature vector for a voxel’s position is an em-
bedding of the voxel’s (x, y, z) position into a multiscale
trilinear spline basis. That is, we use trilinear interpolation
to embed each voxel’s position into a 3D lattice of control
points, and we do this at multiple scales. Our resulting fea-
ture vector is mostly sparse, with values from 0 to 1, where
the closer a position is to a control point determines how
close that control point’s bin is to 1 in the vector. We use a
multiscale basis (different grids at different resolutions) to
improve generalization: 4 lattices at different scales, with
the coarsest having (5 × 2 × 2) bins, and the finest having
(40× 16× 16) bins.

When extracting features for training, we construct these
sparse position feature vectors using trilinear interpolation.
Once we have trained a linear classifier (on a concatena-
tion of our feature vector from Section 3.1 with these posi-
tion features) we can evaluate the position part of the clas-
sifier by reshaping the weights into our multiscale lattice,



(a) A segmentation (b) Weights (pyr) (c) Weights (flat)

Figure 4. Because our volumes are in a canonical frame of ref-
erence, the absolute position of a voxel is informative. In 4(a) we
have an embryo and a ground-truth annotation of a tissue, shown
for reference. We then have the weights that our model learns
for position for that tissue shown as a multiscale lattice (4(b)) and
flattened to a single-scale volume (4(c)). Our multiscale repre-
sentation allows our model to learn broad trends about position in
coarse scales (such that the tissue is unlikely to occur at the top
of the volume) while still learning fine-scale trends (like the shape
of the tissue at the bottom of the volume). Weights are shown as
max-projections, where red is positive, white is neutral, and blue
is negative.

and collapsing that pyramid to be the same size as the in-
put volume. This can be pre-computed, making evaluating
this part of classification extremely fast: the collapsed pyra-
mid of weights is just a per-voxel “bias”. See Figure 4 for a
visualization of a pyramid of learned weights for position,
and of that pyramid collapsed to a volume.

3.3. Context

Given the features in Sections 3.1 and 3.2 we train a
linear classifier (we use logistic regression) to produce a
per-voxel prediction. This prediction is noisy, as we clas-
sify each voxel in isolation. We therefore construct a “two-
layer” model which uses the prediction of the “single-layer”
model to reason about the relative arrangement of the tis-
sue, thereby adding information about context and self-
consistency. We do this by making new “raw”, “fixed”
and “adaptive” features (Section 3.1) from the output of the
single-layer model. We then learn a two-layer model which
uses as its feature channels both the channels used in the
first layer, and these new features built on the output of the
first layer. See Figure 2 for examples of second-layer fea-
tures and for a visualization of this two-layer architecture.

Of course, the output of our single-layer model is signif-
icantly more accurate on training-set volumes than on test-
sets. This means that naively training a two-layer model on
the output of the single-layer model can overfit drastically.
To prevent this, when training single-layer models, we use
leave-one-out cross validation on the training set to pro-
duce predictions for each training-set volume. This cross-
validated output looks similar to the output of the model

on the test-set. We train our two-layer model using these
cross-validated predictions as input, which improves gener-
alization on the test-set.

3.4. Post-Processing

Though our classification model can reason about con-
text and self-consistency, its per-voxel predictions are still
often noisy and incomplete at a fine scale. We therefore use
a CRF-like technique to smooth and “inpaint” our predic-
tions. We would like to smooth our predictions while still
respecting intensity discontinuities in the raw input volume
— that is, we want to smooth within tissue boundaries, but
not across tissue boundaries. For this, we will use a joint-
bilateral filter, where the predictions are smoothed in accor-
dance with the intensity of the input volume.

We can efficiently apply a joint-bilateral filter using the
bilateral grid [10]. We expand the output probabilities from
our two-layer model to a 4-dimensional “grid”, where each
probability is embedded (or “splatted”) with linear inter-
polation into one of three bins: low-intensity, medium-
intensity, and high-intensity (bin centers are [8, 24, 48] ).
The intensity bins are determined by the intensity of the
raw volume while the quantity being filtered is the proba-
bility — hence the “joint” aspect of the bilateral filter. We
then blur the 4D grid by convolving it with a 5-tap binomial
filter in the three “position” dimensions and a 3-tap bino-
mial filter in the “intensity” dimension. We then resample
(or “slice”) the smoothed 4D grid according to the linearly-
interpolated volume intensity to produce a smoothed 3D
volume. This procedure takes only a few seconds per vol-
ume. See Figure 5 for a visualization.

This joint-bilateral smoothing can be viewed as a sin-
gle step of mean-field belief-propagation in a CRF, as in
[17]. We experimented with complete belief-propagation,
but found that only the first iteration contributed signifi-
cantly to the output. This is probably because each type
of tissue is so distant from the other types that the pairwise
potentials have little effect.

(a) Input (b) Ground-truth (c) Raw
Prediction

(d) Smoothed
Prediction

Figure 5. In 5(a) we have a cropped slice of an input volume, for
which we have a ground-truth annotation of a tissue in 5(b). Our
model produces the prediction in 5(c), which is often noisy and
incomplete, so we use joint-bilateral smoothing to produce the
smoothed prediction in 5(d), which propagates label information
across the volume while respecting cell-boundaries.



3.5. Training

For each tissue type we train a binary classifier using
logistic regression, which we found to work as well as a
linear SVM while having the benefits of being interpretable
as probabilities and of introducing a non-linearity, which is
important for our “two-layer” models. To train, we featurize
each volume into a set of channels, and from those channels
we extract many pyramid context features and correspond-
ing position features, train a classifier, evaluate the classi-
fier densely on each volume, and then mine for negatives
(where a “negative” is a voxel labeled true with a proba-
bility less than 0.9, or a voxel labeled false with a proba-
bility greater than 0.1). We do 8 such bootstrapping itera-
tions, after which most tissue types converge. For our two-
layer architecture, we do cross-validation on the training
set, produce cross-validated predictions, produce features
from those, concatenate those second-layer channels with
our first-layer channels (and position), and then train on
both with bootstrapping. We then apply our post-processing
to the predicted output. We evaluate our results using per-
voxel precision and recall, and report the average precision
for each tissue. For our visualizations which require binary
output such as Figure 1(c), we use the threshold which max-
imizes the F-measure of precision and recall on the training
set.

4. Experiments

We demonstrate our semantic segmentation algorithm on
fluorescence volumes of late-state Drosophila embryogene-
sis. We have a dataset of 28 volumes, each with a size of
454 × 177 × 185, or nearly 15 million voxels. An expert
Drosophila biologist annotated 8 biologically meaningful
tissue types, such as “left salivary gland” or “hindgut wall”,
and we split our annotated data into 14 training and 14 test
volumes. Upon publication, we will make our data, annota-
tions, code, and evaluation procedure freely available.

As mentioned previously, the large size and dimensional-
ity of our data makes most pre-existing techniques difficult
to use. Therefore, constructing good baseline techniques for
comparison is very challenging. As one baseline we present
an “oracle” segmentation technique: we use standard water-
shed segmentation techniques (threshold the volume, com-
pute the distance transform, then compute the watershed
transform) on the input volume to produce an oversegmen-
tation of 10-25 thousand “supervoxels”. At test-time we
assign each supervoxel a prediction proportional to the frac-
tion of the supervoxel that has been labeled in the ground-
truth. This oracle technique gives us an upper-bound on
the performance we should expect from super-voxel based
semantic-segmentation techniques. This oracle performs
poorly because so much detail is lost during the segmen-
tation, demonstrating the value of our per-voxel classifica-

tion technique. We attempted more sophisticated segmenta-
tion techniques such as those based on normalized-cuts, but
these are intractable in our domain.

As a second baseline we present an “oracle” exemplar
registration technique: for each test-set annotation we use
iterative closest point to find an affine transformation from
each training-set annotation to that test-set annotation, and
then use the best-fitting training-set annotation as a per-
voxel prediction by linearly interpolating the annotation
into the test volume and blurring it by a (1, 2, 1) bino-
mial kernel. Because this prediction is produced by regis-
tering tissue annotations instead of actual tissues, this or-
acle technique serves as an upper bound on the perfor-
mance we should expect from (affine) registration-based or
correspondence-based techniques such as [15]. This oracle
performs poorly, due to the heavy variation in each tissue
type and the fine-grained detail of cellular boundaries.

As a third baseline comparison, we use the well-known
Histogram of Gradients [12] feature, generalized to volu-
metric data (gradients in 3D instead of 2D, 3D bins of size
4× 4× 4, block-normalization, and 2× 2× 2 cell arrange-
ments), which we optionally augment with our position fea-
tures from Section 3.2. Standard sliding-window detection
with this 3D HOG feature is only tractable because of the
severe pooling used in constructing the features — instead
of 15 million voxels, we need only classify a quarter-million
HOG features. But this comes with a cost, as these coarse
features prevent us from producing per-voxel predictions.
HOG is also limited in that it cannot incorporate contex-
tual information without the feature vectors becoming in-
tractably large. Of course, these limitations are exactly the
motivation for our work.

Our other baselines are ablations of our technique, many
of which are actually extremely similar to preexisting tech-
niques. Pyramid context features on top of the raw input
volume resemble the original use of Shape Context features
[3], except that we use a soft rectangular Haar-like pooling
instead of an expensive log-polar binning, and we use pyra-
mid filtering to densely evaluate our classifier at every voxel
instead of using correspondence for a sparse set of points.
Our pyramid context features on top of our “fixed” feature
channels also resemble Geometric Blur features [4, 5], ex-
cept that instead of sampling a blurred signal is a log-polar
arrangement, we sample a blurred signal is a rectangular
Haar-like arrangement, and again use pyramid filtering in-
stead of correspondence. That same model is also similar
to Daisy features [23], but again made tractable using pyra-
mid filtering. See Figure 3 for a comparison of these feature
types. This comparison of our ablations to past techniques
is generous, as pyramid context features and pyramid filter-
ing are required to make all of these models tractable in our
domain. Actually using standard sliding-window classifica-
tion would take many hours per volume, making bootstrap-



Input (Cropped) Ground-Truth HOGP [12] RP [3] RFP [4, 5] RFAP (RFAP)2 (RFAP)2 + post
Figure 6. Some visualizations of the output of our model, and other models, on a test-set volume. In the first column we have the input
volume (cropped near the tissue of interest), and in the second we have the ground-truth annotation of a tissue. The other columns are
the output of various models, the first being an improved HOG baseline, the last being our complete model, and the others being notable
ablations of our model (some of which resemble optimized and improved versions of other techniques). Many more similar figures and
animations can be found in the supplementary material.

ping, evaluation, and experimentation nearly impossible.

In Table 4 we present the test set average precision for
each model and each tissue type. Model names are as fol-
lows: (1) is our “oracle” segmentation technique, (2) is our
“oracle” exemplar warping technique, (3) is our HOG base-
line, and (4) is (3) where features have been augmented with
our position features. (20) is our complete model, and (5)-
(19) are ablations of (20). (5)-(11) are single-layer mod-
els, where the model name indicates what features have
been included: ‘R’ is the “raw” feature channel, ‘F’ is
our “fixed” feature channels, ‘A’ is our “adaptive” feature
channels, and ‘P’ is our position features. In models (12)-
(14) we set K (the number of levels in our Gaussian pyra-
mids) to small values, to show the value of the coarse scales
of our pyramid context features (in all other experiments,
K = 6). (15)-(19) are our two-layer models, where we
use the previously-described naming convention to indicate
which features have been used for the second layer — so
(RFAP)2 uses all four feature types at both layers of the
architecture. (20) is (19) with the post-processing filtering
of Section 3.4 applied after classification. We also present
Figure 7, which shows precision/recall curves for a subset
of the models on two tissue types, Figure 1, which shows
ground-truth and predicted labels for an entire test-set vol-
ume, and Figure 6, which shows visualizations of the output
of several models for a tissue type, along with the ground-
truth annotation and the (cropped) input volume. See the
supplementary material for many more such visualizations.

Analyzing our results, several trends become clear. The
oracle techniques, despite “cheating” by using the test-set
labels, performs poorly. The HOG baseline does a very poor
job because it cannot produce per-voxel predictions, and be-
cause it cannot reason well about context. Our position-
only baseline shows that, even though our volumes are
registered to each other, position information is not suffi-
cient to solve this problem. Our ablations which resem-
ble shape context and geometric blur features underperform
our complete model, presumably because their input feature
channels are impoverished. Both our “fixed” and “adap-
tive” feature channels improve performance, and so seem
to contribute useful and complementary information. Our

Model Tissue 1 Tissue 2 Tissue 3 Tissue 4 Tissue 5 Tissue 6 Tissue 7 Tissue 8 Avg.
(1) Oracle Seg. 0.745 0.791 0.781 0.677 0.762 0.818 0.783 0.787 0.768
(2) Oracle Warp 0.485 0.597 0.592 0.468 0.464 0.746 0.443 0.476 0.534
(3) HOG [12] 0.249 0.252 0.256 0.101 0.173 0.470 0.157 0.250 0.239
(4) HOGP [12] 0.417 0.339 0.345 0.204 0.431 0.545 0.337 0.371 0.374
(5) P 0.227 0.200 0.247 0.127 0.237 0.261 0.212 0.249 0.220
(6) R [3] 0.427 0.361 0.371 0.280 0.349 0.717 0.709 0.759 0.496
(7) RP [3] 0.705 0.688 0.691 0.425 0.679 0.848 0.818 0.846 0.712
(8) RFP [5] 0.843 0.878 0.867 0.720 0.851 0.939 0.918 0.925 0.868
(9) RAP 0.857 0.863 0.859 0.736 0.887 0.943 0.927 0.933 0.876

(10) RFA 0.860 0.890 0.894 0.783 0.889 0.953 0.935 0.939 0.893
(11) RFAP 0.869 0.893 0.890 0.775 0.898 0.952 0.937 0.941 0.894
(12) RFAP, K=1 0.781 0.768 0.769 0.590 0.814 0.904 0.895 0.901 0.803
(13) RFAP, K=2 0.828 0.848 0.845 0.694 0.864 0.930 0.919 0.918 0.856
(14) RFAP, K=3 0.848 0.890 0.887 0.778 0.885 0.948 0.928 0.933 0.887
(15) RFAP × RP 0.880 0.903 0.897 0.793 0.913 0.958 0.938 0.946 0.904
(16) RFAP × RFP 0.887 0.909 0.905 0.810 0.925 0.965 0.939 0.948 0.911
(17) RFAP × RAP 0.894 0.917 0.912 0.818 0.932 0.964 0.941 0.950 0.916
(18) RFAP × RFA 0.891 0.916 0.910 0.837 0.925 0.967 0.947 0.952 0.918
(19) (RFAP)2 0.894 0.914 0.912 0.825 0.934 0.967 0.942 0.953 0.918
(20) (RFAP)2 + post 0.914 0.934 0.933 0.865 0.945 0.975 0.947 0.958 0.934

Table 1. Test-set average precisions for our model (20), several
ablations of our model (5-19, some of which resemble past tech-
niques), a baseline technique adapted to volumetric data (3-4), one
“oracle” technique based on oversegmentation (1), and another
“oracle” based on exemplar-based registration. We report APs for
the 8 different tissue types in our dataset, and the mean AP across
all tissue types. See the text for a description of each technique.

Figure 7. Precision/recall curves for different models on our entire
test set, for one specific tissue type. On the left we have the hardest
tissue type in our dataset (the one for which our model and the
baselines performs worst) and on the right we have the easiest.
See the supplementary material for the AP curves for all tissue
types.

ablations in which our pyramid depths are limited perform
poorly, as they are deprived of contextual information. Our
two-layer model improves markedly over our single-layer
model, and our post-processing helps greatly.



5. Conclusion

We have presented an algorithm for per-voxel seman-
tic segmentation, demonstrated on 3D fluorescence mi-
croscopy data of Drosophila embryos. The size and high-
dimensionality of our data renders most existing techniques
intractable or inaccurate, while our technique produces very
accurate per-voxel segmentations extremely efficiently —
hundreds of times faster than existing techniques. At the
core of our algorithm is our novel pyramid context fea-
ture, which is not only a powerful descriptive feature, but
is designed such that exact per-voxel linear classification
can be made extremely efficient. We have demonstrated our
model’s efficiency both empirically, through experimenta-
tion, and analytically, through complexity analysis. For our
semantic segmentation algorithm, we have introduced three
feature types — a standard feature set that uses oriented
edge information, a novel feature set produced by applying
feature-learning to pyramid context features, and a feature
which encodes absolute position information. By learning
classifiers on top of pyramid context features based on these
channels we can produce per-voxel segmentations, which
can be improved with contextual information by “stack-
ing” our models and using the output of one layer as in-
put into the next. We have also presented a CRF-like post-
processing technique for improving our output using joint-
bilateral filtering.

Besides advancing computer vision research, our work
has the added benefit of tackling a crucial and unsolved
problem in Drosophila research — that of automatically
constructing an atlas of embryo morphology. By efficiently
and accurately producing semantic segmentations of tissue
types from volumetric data, we enable real, breakthrough
biological research at a large scale.
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